# Off-axis electric field of a ring of charge 

Indrek Mandre [indrek@mare.ee](mailto:indrek@mare.ee) http://www.mare.ee/indrek/

July 1, 2007

## 1 Setting

A generic point $\overrightarrow{p^{\prime}}$ on a ring laying on the XY plane can be described as

$$
\overrightarrow{p^{\prime}}=R \cos \alpha \hat{i}+R \sin \alpha \hat{j} \quad \alpha=[0,2 \pi)
$$

where $R$ is the radius of the ring, $\hat{i}$ and $\hat{j}$ are unit vectors and $\alpha$ is the parametric angle. We want to find the off-axis electric field strength in point $\vec{p}$. As the ring is symmetric we can place the point on the XZ plane and describe it through radial distance $r$ from the axis of the ring and axial distance $a$ along the axis of the ring. With the angle $\theta$ between normal vector $\hat{k}$ and point at $\vec{p}$ we can describe the following relations:

$$
\begin{aligned}
\vec{p} & =(r, 0, a)=r \hat{i}+a \hat{k} \\
\cos \theta & =\frac{\vec{p} \cdot \hat{k}}{|\vec{p}|} \\
r & =|\vec{p}| \sin \theta \\
a & =|\vec{p}| \cos \theta \\
\vec{p}-\overrightarrow{p^{\prime}} & =(r-R \cos \alpha) \hat{i}-R \sin \alpha \hat{j}+a \hat{k} \\
\left|\vec{p}-\overrightarrow{p^{\prime}}\right| & =\sqrt{(r-R \cos \alpha)^{2}+R^{2} \sin ^{2} \alpha+a^{2}} \\
& =\sqrt{r^{2}-2 r R \cos \alpha+R^{2} \cos ^{2} \alpha+R^{2} \sin ^{2} \alpha+a^{2}} \\
& =\sqrt{r^{2}+R^{2}+a^{2}-2 r R \cos \alpha}
\end{aligned}
$$

## 2 Electric potential at point $\vec{p}$

Electric potential of a point of charge is

$$
\varphi=\frac{q}{4 \pi \varepsilon_{0} r}
$$

Let $Q$ be the total charge on the ring and let the charge be uniformly distributed. Integrating over the ring of charge gives us

$$
\varphi=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{2 \pi R} \int_{0}^{2 \pi R} \frac{d s}{\left|\vec{p}-\vec{p}^{\prime}\right|}
$$

$$
\begin{aligned}
&= \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \alpha}{\sqrt{r^{2}+R^{2}+a^{2}-2 r R \cos \alpha}} \\
&= \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{\pi} \int_{0}^{\pi} \frac{d \alpha}{\sqrt{r^{2}+R^{2}+a^{2}-2 r R \cos \alpha}} \\
&\left(\beta=\frac{\pi-\alpha}{2} \Rightarrow \alpha=\pi-2 \beta, d \alpha=-2 d \beta\right) \\
&= \frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{d \beta}{\sqrt{r^{2}+R^{2}+a^{2}+2 r R\left(1-2 \sin ^{2} \beta\right)}} \frac{1}{\pi} \frac{1}{\sqrt{q}} \int_{0}^{\frac{\pi}{2}} \frac{d \beta}{\sqrt{1-\frac{4 r R}{q} \sin ^{2} \beta}} \\
&= \frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi} \frac{1}{\sqrt{q}} \int_{0}^{\frac{\pi}{2}} \frac{d \beta}{\sqrt{1-k^{2} \sin ^{2} \beta}} \\
&= \frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi} \frac{K(k)}{\sqrt{q}} \\
& q= r^{2}+R^{2}+a^{2}+2 r R \\
& k=\sqrt{\frac{4 r R}{q}} \\
&
\end{aligned}
$$

and $K(k)$ is the complete elliptic integral of the first kind.

## 3 Electric field

Electric field is the negative gradient of the electric potential:

$$
\begin{aligned}
\varphi & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi} \frac{K(k)}{\sqrt{q}} \\
\vec{E} & =-\nabla \varphi=\left(-\frac{\partial \varphi}{\partial r}, 0,-\frac{\partial \varphi}{\partial a}\right)
\end{aligned}
$$

This requires derivation of the elliptic integral function:

$$
\frac{\partial K(k)}{\partial k}=\frac{E(k)-\left(1-k^{2}\right) K(k)}{k\left(1-k^{2}\right)}
$$

Deriving the axial component of the electric field

$$
\begin{aligned}
\frac{\partial q}{\partial a} & =2 a \\
\frac{\partial k}{\partial a} & =\frac{1}{2} \frac{1}{\sqrt{\frac{4 r R}{q}}} \frac{-(4 r R)(2 a)}{q^{2}} \\
& =-\frac{a k}{q}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial K(k)}{\partial a} & =\frac{\partial K(k)}{\partial k} \frac{\partial k}{\partial a} \\
\frac{\partial \varphi}{\partial a} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{\frac{E(k)-\left(1-k^{2}\right) K(k)}{k\left(1-k^{2}\right)}\left(-\frac{a k}{q}\right) \sqrt{q}-\frac{1}{2} \frac{1}{\sqrt{q}} 2 a K(k)}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{-\frac{E(k)-\left(1-k^{2}\right) K(k)}{\left(1-k^{2}\right)} \frac{a}{\sqrt{q}}-\frac{a K(k)}{\sqrt{q}}}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2 a}{\pi}\left[\frac{-\frac{E(k)-\left(1-k^{2}\right) K(k)+K(k)\left(1-k^{2}\right)}{\left(1-k^{2}\right) \sqrt{q}}}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2 a}{\pi}\left[-\frac{E(k)}{\left(1-k^{2}\right) q^{\frac{3}{2}}}\right] \\
& =-\frac{Q}{4 \pi \varepsilon_{0}} \frac{2 a}{\pi} \frac{E(k)}{q^{\frac{3}{2}}\left(1-k^{2}\right)}
\end{aligned}
$$

The same for the radial component:

$$
\begin{aligned}
\frac{\partial q}{\partial r} & =2(r+R) \\
\frac{\partial k}{\partial r} & =\frac{1}{2} \frac{1}{\sqrt{\frac{4 r R}{q}}} \frac{4 R q-(4 r R) 2(r+R)}{q^{2}} \\
& =\frac{1}{\sqrt{\frac{4 r R}{q}}} \frac{2 R-k^{2}(r+R)}{q} \\
& =\frac{2 R-k^{2}(r+R)}{k q} \\
\frac{d K(k)}{d k} & =\frac{E(k)-\left(1-k^{2}\right) K(k)}{k\left(1-k^{2}\right)} \\
\frac{\partial K(k)}{\partial r} & =\frac{d K(k)}{d k} \frac{\partial k}{\partial r} \\
\frac{\partial \varphi}{\partial r} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{\frac{E(k)-\left(1-k^{2}\right) K(k)}{k\left(1-k^{2}\right)}\left(\frac{2 R-k^{2}(r+R)}{k q}\right) \sqrt{q}-\frac{1}{2} \frac{1}{\sqrt{q}} 2(r+R) K(k)}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{\frac{\left(E(k)-\left(1-k^{2}\right) K(k)\right)\left(2 R-k^{2}(r+R)\right)}{k^{2}\left(1-k^{2}\right) \sqrt{q}}-\frac{(r+R) K(k)}{\sqrt{q}}}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{\left.\frac{\left(E(k)-\left(1-k^{2}\right) K(k)\right)\left(2 R-k^{2}(r+R)\right)-(r+R) K(k) k^{2}\left(1-k^{2}\right)}{k^{2}\left(1-k^{2}\right) \sqrt{q}}\right]}{q}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{\left(E(k)-\left(1-k^{2}\right) K(k)\right)\left(2 R-k^{2}(r+R)\right)-\left(1-k^{2}\right) K(k) k^{2}(r+R)}{k^{2}\left(1-k^{2}\right) q^{\frac{3}{2}}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi}\left[\frac{2 R E(k)-E(k) k^{2}(r+R)-2 R\left(1-k^{2}\right) K(k)}{k^{2}\left(1-k^{2}\right) q^{\frac{3}{2}}}\right] \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi k^{2}\left(1-k^{2}\right) q^{\frac{3}{2}}}\left(2 R E(k)-k^{2}(r+R) E(k)-2 R\left(1-k^{2}\right) K(k)\right) \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi k^{2}\left(1-k^{2}\right) q^{\frac{3}{2}}}\left(2 R E(k)-k^{2} r E(k)-k^{2} R E(k)-2 R K(k)+2 R k^{2} K(k)\right) \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi k^{2}\left(1-k^{2}\right) q^{\frac{3}{2}}}\left(E(k)\left(2 R-k^{2}(r+R)\right)-2 R K(k)\left(1-k^{2}\right)\right)
\end{aligned}
$$

## 4 Results

Here are the electric field radial and axial components for the off-axis electric field of a ring of charge:

$$
\begin{aligned}
E_{r} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi q^{\frac{3}{2}}(1-\mu)} \frac{1}{\mu}(2 R K(\sqrt{\mu})(1-\mu)-E(\sqrt{\mu})(2 R-\mu(r+R))) \\
E_{a} & =\frac{Q}{4 \pi \varepsilon_{0}} \frac{2}{\pi q^{\frac{3}{2}}(1-\mu)} a E(\sqrt{\mu})
\end{aligned}
$$

where

$$
\begin{aligned}
q & =r^{2}+R^{2}+a^{2}+2 r R \\
\mu & =\frac{4 r R}{q}
\end{aligned}
$$

and $K(\sqrt{\mu})$ is the complete elliptic integral of the first kind and $E(\sqrt{\mu})$ is the complete elliptic integral of the second kind.

As a bonus here are the complementary equations for the off-axis magnetic field of a ring of current:

$$
\begin{aligned}
B_{r} & =\frac{\mu_{0}}{4 \pi} I \frac{2}{\sqrt{q}} \frac{a}{r}\left[E(\sqrt{\mu}) \frac{q-2 r R}{q-4 r R}-K(\sqrt{\mu})\right] \\
B_{a} & =\frac{\mu_{0}}{4 \pi} I \frac{2}{\sqrt{q}}\left[E(\sqrt{\mu}) \frac{R^{2}-r^{2}-a^{2}}{q-4 r R}+K(\sqrt{\mu})\right]
\end{aligned}
$$

## 5 Sources

The following material was used in compiling this paper:

- Wikipedia
http://en.wikipedia.org/wiki/Main_Page
- "Off-axis electric field of a ring of charge"

Fredy R. Zypman,
http://www.physics.buffalo.edu/~sen/documents/field_by_charged_ring.pdf

- "Elliptic Integrals, Elliptic Functions and Theta Functions" Prof. J. R. Culham
http://www.mhtlab.uwaterloo.ca/courses/me755/
- Off-axis Field Due to a Current Loop

Eric Dennison
http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm

