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1 Setting

A generic point E’ on aring laying on the XY plane can be described as
P =Rcosoi+Rsinaf o= [0,27)

where R is the radius of the ring, 7 and J are unit vectors and o, is the parametric angle.
We want to find the off-axis electric field strength in point j. As the ring is symmetric
we can place the point on the XZ plane and describe it through radial distance r from
the axis of the ring and axial distance a along the axis of the ring. With the angle 6
between normal vector k and point at p we can describe the following relations:

P = (n0,a)=ri+ ak
= h
cosf = pT
|7
r = |p|sin®
a = |P|cos6
p—p = (r—Rcosal)i — Rsinouj + ak
|l‘;'7_’/| — \/(r—RcosoL)zJrRZSiDZO(ﬁLa2

= /12— 2rRcoso.+ R2cos* 0.+ R2sin? 0.+ @
= VP2 +R2+ a2 2rRcosa

2 Electric potential at point p

Electric potential of a point of charge is
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Let O be the total charge on the ring and let the charge be uniformly distributed. Inte-
grating over the ring of charge gives us
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and K (k) is the complete elliptic integral of the first kind.

3 Electric field

Electric field is the negative gradient of the electric potential:
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This requires derivation of the elliptic integral function:
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Deriving the axial component of the electric field
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The same for the radial component:
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4 Results

Here are the electric field radial and axial components for the off-axis electric field of
aring of charge:
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and K (,/u) is the complete elliptic integral of the first kind and E(,/u) is the complete
elliptic integral of the second kind.

As a bonus here are the complementary equations for the off-axis magnetic field of
a ring of current:
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