Off-axis electric field of a ring of charge

Indrek Mandre <indrek@mare.ee>
http://www.mare.ee/indrek/

July 1, 2007

1 Setting

A generic point \(\mathbf{p}_0 \) on a ring laying on the XY plane can be described as

\[
\mathbf{p}_0 = R \cos \alpha \hat{i} + R \sin \alpha \hat{j} \quad \alpha = [0, 2\pi)
\]

where \(R \) is the radius of the ring, \(\hat{i} \) and \(\hat{j} \) are unit vectors and \(\alpha \) is the parametric angle.

We want to find the off-axis electric field strength in point \(\mathbf{p} \). As the ring is symmetric we can place the point on the XZ plane and describe it through radial distance \(r \) from the axis of the ring and axial distance \(a \) along the axis of the ring. With the angle \(\theta \) between normal vector \(\hat{k} \) and point at \(\mathbf{p} \) we can describe the following relations:

\[
\begin{align*}
\mathbf{p} &= (r, 0, a) = r \hat{i} + a \hat{k} \\
\cos \theta &= \frac{\mathbf{p} \cdot \hat{k}}{||\mathbf{p}||} \\
r &= ||\mathbf{p}|| \sin \theta \\
a &= ||\mathbf{p}|| \cos \theta \\
\mathbf{p} - \mathbf{p}' &= (r - R \cos \alpha) \hat{i} - R \sin \alpha \hat{j} + a \hat{k} \\
||\mathbf{p} - \mathbf{p}'|| &= \sqrt{(r - R \cos \alpha)^2 + R^2 \sin^2 \alpha + a^2} \\
&= \sqrt{r^2 - 2rR \cos \alpha + R^2 \cos^2 \alpha + R^2 \sin^2 \alpha + a^2} \\
&= \sqrt{r^2 + a^2 - 2rR \cos \alpha}
\end{align*}
\]

2 Electric potential at point \(\mathbf{p} \)

Electric potential of a point of charge is

\[
\varphi = \frac{q}{4 \pi \varepsilon_0 r}
\]

Let \(Q \) be the total charge on the ring and let the charge be uniformly distributed. Integrating over the ring of charge gives us

\[
\varphi = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{2 \pi R} \int_0^{2\pi R} ds \frac{1}{||\mathbf{p} - \mathbf{p}'||}
\]
\[\frac{\partial K(k)}{\partial k} = \frac{E(k) - (1 - k^2)K(k)}{k(1 - k^2)} \]

Deriving the axial component of the electric field

\[\frac{\partial q}{\partial a} = 2a \]
\[\frac{\partial k}{\partial a} = \frac{1}{2} \frac{4rR}{q^2} \]
\[= \frac{ak}{q} \]
\[
\frac{\partial K(k)}{\partial a} = \frac{\partial K(k)}{\partial k} \frac{\partial k}{\partial a}
\]

\[
\frac{\partial q}{\partial r} = 2(r + R)
\]

\[
\frac{\partial k}{\partial r} = \frac{1}{2} \frac{4Rq - (4rR)2(r + R)}{\sqrt{q}}
\]

\[
\frac{dK(k)}{dk} = \frac{E(k) - \frac{(1-k^2)K(k)}{k(1-k^2)}}{k(1-k^2)}
\]

\[
\frac{dK(k)}{dr} = \frac{dK(k)}{dk} \frac{dk}{dr}
\]

\[
\frac{\partial \phi}{\partial r} = \frac{Q}{4\pi \varepsilon_0 \pi} \left[\frac{E(k) - \frac{(1-k^2)K(k)}{k(1-k^2)}}{k(1-k^2)} \left(\frac{2R - k^2(r + R)}{kq} \right) \sqrt{q} - \frac{1}{2} \sqrt{q} \frac{2(r + R)K(k)}{q} \right]
\]

\[
= \frac{Q}{4\pi \varepsilon_0 \pi} \left[\frac{(E(k) - (1-k^2)K(k))(2R - k^2(r + R))}{k^2(1-k^2)\sqrt{q}} \right]
\]

\[
= \frac{Q}{4\pi \varepsilon_0 \pi} \left[\frac{(E(k) - (1-k^2)K(k))(2R - k^2(r + R))}{k^2(1-k^2)\sqrt{q}} - \frac{(r + R)K(k)}{\sqrt{q}} \right]
\]

The same for the radial component:
\[
\begin{align*}
E_r &= \frac{Q}{4\pi\varepsilon_0 \pi k^2 (1 - k^2) q^2} \left[2RE(k) - E(k) k^2 (r + R) - 2R(1 - k^2) K(k) \right] \\
E_a &= \frac{Q}{4\pi\varepsilon_0 \pi k^2 (1 - k^2) q^2} \left[2RE(k) - k^2 rE(k) - k^2 RE(k) - 2RK(k) + 2R^2 K(k) \right]
\end{align*}
\]

4 Results

Here are the electric field radial and axial components for the off-axis electric field of a ring of charge:

\[
E_r = \frac{Q}{4\pi\varepsilon_0 \pi q^2 (1 - \mu) \mu} \left(2RK\sqrt{\mu}(1 - \mu) - E(\sqrt{\mu})(2R - \mu(r + R)) \right)
\]

\[
E_a = \frac{Q}{4\pi\varepsilon_0 \pi q^2 (1 - \mu)} aE(\sqrt{\mu}) \]

where

\[
q = r^2 + R^2 + a^2 + 2rR
\]

\[
\mu = \frac{4rR}{q}
\]

and \(K(\sqrt{\mu}) \) is the complete elliptic integral of the first kind and \(E(\sqrt{\mu}) \) is the complete elliptic integral of the second kind.

As a bonus here are the complementary equations for the off-axis magnetic field of a ring of current:

\[
B_r = \frac{\mu_0 I}{4\pi \sqrt{q}} \left(\frac{2a}{\sqrt{q} r} \left[E(\sqrt{q}) \frac{q - 2rR}{q - 4rR} - K(\sqrt{q}) \right] \right)
\]

\[
B_a = \frac{\mu_0 I}{4\pi \sqrt{q}} \left[E(\sqrt{q}) \frac{R^2 - r^2 - a^2}{q - 4rR} + K(\sqrt{q}) \right]
\]

5 Sources

The following material was used in compiling this paper:

- Wikipedia
 http://en.wikipedia.org/wiki/Main_Page
- “Off-axis electric field of a ring of charge”
 Fredy R. Zypman,
• “Elliptic Integrals, Elliptic Functions and Theta Functions”
 Prof. J. R. Culham
 http://www.mhtlab.uwaterloo.ca/courses/me755/

• Off-axis Field Due to a Current Loop
 Eric Dennison
 http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm