Cube Polywell Wiffleball Modeling
Using Method of Images

Indrek Mandre <indrek @mare.ee>
Icarus @ http://talk-polywell.org/

July 29, 2008

Abstract

It has been speculated that the wiffleball effect in the cube polywell could be
modeled as a superconducting sphere in the middle of the system. To do that the
method of images is a perfect solution.

1 Method of Images

From http://en.wikipedia.org/wiki/Method_of_images:

Method of images (or mirror images) is a mathematical tool for solv-
ing differential equations in which the domain of the sought function is
extended by the addition of its mirror image with respect to a symmetry
hyperplane, with the purpose of facilitating the solution of the original
problem. It is used in electrostatics to simply calculate or visualize the
distribution of the electric field of a charge in the vicinity of the conduct-
ing surface. It is based on the fact that the tangential component of the
electrical field to the surface of a conductor is zero, and that some field E
withV XE =0and V -E = 0 in some region is uniquely defined by its nor-
mal component over the surface which confines this region (the uniqueness
theorem).

The method may also be used in magneto-statics for calculating the
magnetic field of a magnet which is close to a superconducting surface.
Here, the component of the magnetic field normal to the superconductor
is zero. Another use is in fluid dynamics: the movement of a vortex near a
wall may be calculated using an image vortex.

To apply the method of images we shall place inverted coils within the system so that
the resulting field lines on the surface of the superconducting sphere would be tangen-
tial to it. This method is known to be correct for regions exterior and upon the sphere
itself, integral quantities of physical properties for the domain interior to the sphere
may also be related to the image system physics.

2 The Image Coils

The size and shape of the image coils can be determined by using inversive geometry.
From http://en.wikipedia.org/wiki/Inversive_geometry:

In the plane, the inverse of a point P with respect to a circle of center
O and radius r is a point P’ such that P and P’ are on the same ray going
from O, and OP times OP' equals the radius squared, |OP||OP'| = r*.

Nomenclature:

a - radius of the spherical inversion boundary

7p - planar radius of physical coils

sp - spacing of physical coils

¢p - conical radius to physical coil from center of Polywell
r; - planar radius of image coils

s; - spacing of image coils

¢; - conical radius to image coil from center of Polywell

[- half-length of side of the Polywell cube

Sp

b

i
S
l

QO

Figure 1: Cross-section of the cube polywell with image coils

The spherical inversion has the property that all points exterior to the sphere are
reflected to points interior to the sphere by the relation

a2

Vint =
Vext

where r,,; is the radius of the point exterior to the sphere and r;,, is the radius of the
point interior to the sphere. Using the spherical inversion property for the points on the
physical coil circular axis we get

Ci=— ey

ci a\?
- <>)
Cp Cp

and by extension

The half-length of a side of the cubical framework that Polywell coils lie upon is
given by
I=r,+ S

V2

and by Pythagoras it then follows that

2
2_2,72_2 Sp
c,=r,+l"=r,+(r,+— 3)
== (o)
and further, by similar triangles we can show that

Ci ri Si

cp Tp Sp
So taking equation 2 and equation 3 we get
Ci a2
@ milm)
B3+ ()
where we shall call { our spherical inversion factor.
Now to find the location of our image coils that will generate the spherical bound-
ary, given a specified wiffleball radius, we use

ri=rpl and s;=s,{

To get the correct solution the field generated by the image coils has to be corrected.
We can do this through modifying the current /; running in the image coils:

Tt
ri \/E
How this equation arises is currently unclear but it gives us a perfect solution where

the field lines are tangential to the sphere. By speculation this could come from the
Kelvin transformation. These equations are also described in [sezginer].

L=—I,

Figure 2: Cube polywell with image coils

3 Field visualizations

Figure 3: Field lines at cube polywell cross-section (meridian 0)

Figure 4: Field lines at cube polywell cross-section (meridian 45)

Figure 6: Field magnitude on the wiffleball sphere

4 Cusps

If we define cusps for the wiffleball sphere as points on the sphere where field lines are
perpendicular to the sphere surface, we can identify three types of cusps:

e 6 cusps at the faces
e 8 cusps at the corners
e 12 singularities where coils are the closest

It appears there are no line cusps. Cusps are the places where the electrons can more
easily leak out of the wiffleball.

References

[sezginer] Apo Sezginer and Weng Cho Chew, “Image of a Static Current Loop over
a Superconducting Sphere”, IEEE TRANSACTIONS ON MAGNETICS,
VOL. 26, NO. 3, MAY 1990.

A Octave code for calculating the fields

A.1 loop_bfield.m - off-axis magnetic field radial and axial compo-
nents of a loop of current

function [Br, Ba] = loop_bfield(radius, current, r, a)
f1 =2 % 10A—7 % current;
R radius ;

g=r .« r+R .« R+a % a+2 %71 .%R;
=4 %1 xR ./ q;

[K.E] = ellipke (m):
sqrt_q = sqrt(q);
f2 =q-—4 .xr .xR;
Br=fl % a .« (E.x (Qq—2 .xr .« R) ./ f2 —K) ./ (sqri_q .x r);
Ba=fl .x (E.x (R.xR—r1 .xr—a.xa). f2+K) ./ sqri_q;
% recalculate the Br for very small m values
idx = find(m < 5e-7);
if (lisempty (idx))
E a(idx);
r(idx);
m = repmat (5e—7, size(a)):
m2 =m N 2;
% assuming given m and a, find cutoff r
r
q

—(sqrt((4 .— m2) .x R"2 — 2 «x R % a .*x m2—a .~ 2 .x m2) .— 2 «R) ./ m
r .o+ r+R . xR+a .xa+2 %71 .xR;
m=4 .x r .x R ./ q;
[K,E] = ellipke (m);
sqrt_q = sqrt(q);
f2 =q—4 .xr .xR;
% use linear interpolation from the cutoff radius
Br(idx) = (rr ./ r) .« fl .+ a .« (E .x (¢ — 2 .+ r .+ R) ./ f2 —K) ./ (sqrt_q .* 1):
endif
endfunction

A.2 loop_bfield3d.m - off-axis magnetic field vector components of
a loop of current

function [B] = loop_bfield3d(center, normal, radius, current, pos)
len = size(pos, 1);
v = pos — repmat(center, len, 1); % vector from the center of a coil to the point
nvs = repmat(normal, len, 1): % replicate the normal vectors
a = dot(v, nvs, 2); % axial distance, axial vector is the normal vector

radial = v — nvs .x repmat(a, 1, 3);
r = sqrt(dot(radial , radial, 2));
radialn = radial ./ repmat(r, 1, 3);

idx = find(any(r, 2) == 0):
if (lisempty (idx))
radialn (idx, :) = zeros(size(idx, 1), 3);
endif
[Br,Ba] = loop_bfield (radius, current, r, a):
B = radialn .+ repmat(Br.1,3) + nvs .x repmat(Ba,l,3);
endfunction

A.3 polywell_bfield.m - magnetic field vector components for the
entire polywell system

function [B] = polywell_bfield(radius, spacing, current, pos)

rr = radius + spacing / sqrt(2);

B = loop_bfield3d([—rr, 0, o1, [1, 0, 0], radius, current, pos) + \
loop_bfield3d ([rr, 0, 0], [-1, 0, 0], radius, current, pos) + \
loop_bfield3d ([0, —rr, 0], [0, 1, 0], radius, current, pos) + \
loop_bfield3d ([0, rr, 0], [0, -1, 0], radius, current, pos) + \
loop_bfield3d ([0, 0, —rr], [O, 0, 1], radius, current, pos) + \
loop_bfield3d ([0, 0, rr], [O, 0, —1], radius . current, pos):

endfunction
A.4 camera3dn.m - octave camera view angle

function [normal] = camera3dn()

[theta , phi]=view () ;

phi = 90 — phi:

theta = theta + 270;

phi = phi = pi / 180;

theta = theta = pi / 180;

normal = [cos(theta)ssin(phi), sin(theta)ssin(phi), cos(phi)];
endfunction

A.5 ball.mat - visualize the field on the modeled wiffleball sphere

% 24—sector symmetry reflections for the cube polywell

sectors = cat (3,

[1 0 1 o o0 1],[1 0 0 0~-1 0;: 0 0-11],
[1 0 0 o 1 o1, [1 0 0;: 0 0 1: 0-1 01,
[-1 0 1 ;0 0-11,[-1 0 0;: O0~-1 0;: 0 O 117,
[-1 0 o 1, 01 071,[-1 0 0; 0O O ~I5 0~-1 01,
[0 1 o 1, 1 0 01,0~ 0; 0 O0O~1I5 1 0 01,

0 0 1 0, 1.0 01,00 0 1; 0-1 05 1 0 01,
[0 1 0O-1;-1 0 0], [0~ 0; 0 O 1; -1 0 01,
[0 0 I 0;-1 0 01,00 0-1;5 0-1 0; -1 0 01,
[0 0 0 0; 01 0J],[0 O0~1; 1 0 0; 0-1 01,
[0 1 o 0, 0 0-17],[0~-1 0; 1 0 0;: 0 O 117,
[0 O o 0 0 1 071],[0 0 I;=1 0 0; O0-1 01,
[0 1 0O 0;: 0 0 11,[0~1 0:~1 0 0: 0 0-11):

% set up polywel size and the image coil size

global R S CURRENT iR iS iCURRENT

R = 0.15; S = 0.08; CURRENT = 1;

A= 0.15; % wiffleball radius

inv_f = (A"2)/(R"2 + (R + S/sqrt(2))"2);

iR = Rxinv_f; iS = Sxinv_f; iCURRENT = —CURRENT / sqrt(inv_f);

% half—length of the polywell cube side
L = sqrt(R*2 + (R + S/sqrt(2))"2);

% calculate field magnitude on the sphere
[X.Y.Z] = sphere(1000);

X=X A Y=Y .x Ay Z=7 .x A;

POS = cat(2, X(:), Y(:), Z(:));

B = polywell_bfield (R, S, CURRENT, POS);

B = B + polywell_bfield (iR, iS, iCURRENT, POS);
C = reshape (sqrt(dot(B, B, 2)), size(X));

% direction function within the field for our ode
function [d] = dirf(t, x)
global R S CURRENT iR iS iCURRENT
pos = reshape(x, size(x, 1)/3, 3);
B = polywell_bfield (R, S, CURRENT, pos);
B = B + polywell_bfield (iR, iS, iCURRENT, pos):
B =B ./ repmat(sqrt(dot(B, B, 2)), 1, 3);
d = reshape (B, size(x)):
endfunction

% starting points for lines for the ode
% assumption: lines go radially at equal spacing
sp = zeros(8, 3):
for i=1:8
phi = (i — 1) = pi / 16;
sp(i.:) = [-A + 0.01, le—5 x cos(phi), le—5 sin(phi)];
endfor

% calculate the field lines on the sphere

options = odeset (’MaxStep’, 0.001, *InitialStep *, 0.001,
*AbsTol’, le—6, "RelTol’, le—6);

[t, x] = ode45(@dirf, [0 0.22], sp(:)’, options);

= cat(2, x(:, i), x(:, i +n), x(:, i +2 % n));
% erase the cusp lines

idx=find (dot(pos,pos,2) < (A—0.001)72);

pos(idx ,:) = 0;

% map the positions into 24 sectors

for j ze (sectors , 3)
POS = cat(l, POS, (sectors(:,:,j) % pos’)’);
POS = cat(l, POS, [0 0 0]):
endfor
endfor
hold on

% draw the sphere with field magnitudes
set(gca, 'XTick’,[], *YTick’,[], 'ZTick’,[]):
axis([-A A —A A —A A]);

axis square;

view(—15, 30);

surf (X,Y,Z,C);

view(—15, 30);

shading interp

colormap (jet(24)):

% draw the field lines

cn = camera3dn();

cn = repmat(cn, size(POS)(1), 1);

% erase points behind the view
POS(find (dot(POS, cn, 2) < 0), :) = 0;
idx=find (any (POS,2)==0):

start = 0;

10

for i=1:size (POS,1)
if any(POS(i,:))
if start
start
endif
else
if start != 0
data = POS(start:i—1, :):
x = data(:, 1):
y = data(:, 2);
z = data(:, 3):
plot3(x, y, z, ‘color’, [0 0 0]);
view(—15, 30);
endif
start = 0;
endif
endfor

hold off

print ("ball.png", "—S1200,1200");

print ("ball.eps", "—depsc");
clf
hold on

set(gca, 'XTick’,[], *YTick’,[], *ZTick’.[]):
view(—15, 30);

axis([-A A -A A -A A]):

axis square;

% draw the field lines
cn = camera3dn();
cn = repmat(cn, size(POS)(1), 1);
% erase points behind the view
POS(find (dot(POS, cn, 2) < —0.005), :) = 0;
idx=find (any (POS,2)==0);
start = 0;
for i=l:size (POS,1)
if any(POS(i.:))
if start 0
start
endif
else
if start != 0
data = POS(start:i—1, :);
x = data(:, 1);
y = data(:, 2);
z = data(:, 3);
plot3(x, y, z, ’color’, [0 0 0]):
view(—15, 30):
endif
start = 03
endif
endfor

hold off

print ("ball2.png", "—S1200,1200");
print ("ball3.eps", "—deps"):

11

