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Abstract
Where does the method of least squares come from? How does one

motivate it (somewhat rigorously)? As an amateur in statistics I couldn’t
really find many answers even from the wikipedia (as of 11 May 2012), or
the numerical recipes in c++ book (that doesn’t even mention correlated
data/errors), and the Internet is full of hand-waving and scripts for fol-
lowing by rote (for accountants who run our economy, I guess). Here I try
to write what I’ve found out so far. As I’m an amateur, be careful of my
derivations and conclusions (this is the disclaimer;). But I hope someone
finds this useful.

1 Model and data
Let us have a series of measurements (or Monte-Carlo simulation results) y1, . . . , yn,
taken at points x1, . . . , xn.

We try to fit this data to the model

Y = Y (x|a1 . . . am) , (1)

where ak are the model parameters. That is we try to find the most likely
parameters (or we can just say the most likely model) given the data from our
measurements.

We assume that the measurements yi are of normal distribution, and they
can be correlated, with correlations given by the covariance matrix

Σ =


cov (y1, y1) cov (y1, y2) · · · cov (y1, yn)
cov (y2, y1) cov (y2, y2) · · · cov (y1, yn)

...
. . . . . .

...
cov (yn, y1) · · · · · · cov (yn, yn)

 . (2)

Note that the diagonals of this matrix are simply the variances σ2
i = cov (yi, yi)

of the measurements.
In real life measurements, the covariances matrix is often unavailable. Then

it needs to be estimated. In case of Monte-Carlo simulations, however, it is
usually easy to calculate.

In case of no correlations in the measurements (which is usually, and some-
times wrongly assumed), matrix Σ will be diagonal.
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2 Optimizing the parameters
For the following, we define these vectors:

Y = (Y (x1|a1 . . . am) , . . . , Y (xn|a1 . . . am))
T
, (3)

y = (y1, . . . , yn)
T
. (4)

Assuming also multivariate normal distribution for the vector y (in case of
uncorrelated measurements this is automatically given), the probability of the
data given the model P (y|a1 . . . am) is

P (y|a1 . . . am) ∝ 1

(2π)
n/2 |Σ|1/2

exp

(
−1

2
(y −Y)

T
Σ−1 (y −Y)

)
. (5)

What we need is the probability of the model given the data, P (a1 . . . am|y),
and then we need to maximize this probability by choosing best parameters.

According to the Bayes’ theorem,

P (a1 . . . am|y) = P (y|a1 . . . am)
P (a1 . . . am)

P (y)
. (6)

We can’t change P (y). As for probability of the model P (a1 . . . am), the easiest
route to take here would be to treat all models equal. Therefore,

P (a1 . . . am)

P (y)
= const, (7)

and so
P (a1 . . . am|y) ∝ P (y|a1 . . . am) . (8)

Taking a natural logarithm yields us

lnP (a1 . . . am|y) = −
1

2
(y −Y)

T
Σ−1 (y −Y) +K, (9)

where K is some constant of no importance to us. Hence, to maximize the
probability of the model given the data, we need to minimize

S = (y −Y)
T

Σ−1 (y −Y) (10)

=

n∑
i,j=1

(yi − Y (xi|a1 . . . am))wij (yj − Y (xj |a1 . . . am)) , (11)

where wij is an element from the matrix W = Σ−1. In case our measurements
are not correlated, the covariance matrix Σ is diagonal (with measurement
variance σ2

i as diagonal elements, that is wij = δij
1
σ2
i
). This results in the

classical

S =

n∑
i=1

(yi − Y (xi|a1 . . . am))
2

σ2
i

. (12)
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3 Statistical testing, chi-square distribution
Equation (12) is as per our assumptions a sum of squared normally distributed
(∼ N (0, 1)) values and so is of chi-square distribution. As different members
are related through parameters, the effective number of degrees of freedom is
reduced to dof. = n − m. Don’t ask me what degrees of freedom really are
(rigorously). All I have now is a vague feeling.

We will now describe statistical testing. If the sum (12) lies far on the tail
of the chi-square distribution, it is very unlikely. In such a case we can conclude
that the model is probably wrong. Hence, to accept the model at probability p,
we must have

S ≤ χ2
n−m (p) , (13)

where χ2
dof. (p) is the quantile at p of the chi-square distribution with n − m

degrees of freedom (dof.).

4 Degrees of freedom, the case of correlated data
In case of correlations, the question arises whether (11) is again of chi-square
distribution with n − m degrees of freedom. I will try to answer it here. We
do this by diagonalizing the covariance matrix and changing the basis for the
model and the results.

We assume that the covariance matrix can be diagonalized, that is we can
find matrix P = (pij), such that

Σ = PDP−1, (14)

D =


σ̂2
1 0 · · · 0

0 σ̂2
2

. . .
...

...
. . . . . . 0

0 · · · 0 σ̂2
n

 . (15)

We also note here that as Σ is symmetric, P−1 = PT . Replacing (14) into (10)
yields us

S = (y −Y)
T

PD−1PT (y −Y) (16)

=
(
PTy −PTY

)T
D−1

(
PTy −PTY

)
(17)

=

n∑
i=1

(
ŷi − Ŷ (xi|a1 . . . am)

)2
σ̂2
i

, (18)

where

ŷi =
∑
j

pjiyj , (19)

Ŷ (xi|a1 . . . am) =
∑
j

pjiY (xj |a1 . . . am) . (20)

Assuming multivariate normal distribution for y (any linear combination of its
members is then of normal distribution), ŷi is of normal distribution and so sum
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(18) is of chi-square distribution with n −m degrees of freedom. But as that
sum is the same as (11), we can conclude that the answer to our question is yes,
sum (11) is of chi-square distribution with n−m degrees of freedom.

In a sense we have moved from one model to another, and one should be
able to show that cov (ŷi, ŷj) = 0, i 6= j, that is the transformation has purged
the correlations from our measurements.

5 Iteratively towards the minimum
Finding the optimal parameters of a non-linear model is a non-trivial task.
Suppose we start with a set of “initial” parameters, and try to improve these
gradually/iteratively towards a minimum. Note here that we can end up in a
local minimum, not the global one; and that there are no universal/consistent
algorithms to search for the global minimum.

Let us define the vector of the m parameters as

a = (a1, . . . , am)
T
. (21)

The first idea would be to move along the gradient of S, that is

anext = acur − constant · ∇S (acur) . (22)

A naive implementation of this can be very slow and inefficient.
The second idea would be to use the Taylor expansion, function S can then

be approximated as

S (anext) = S (acur) + (anext − acur)
T
DS (acur)+

1

2
(anext − acur)

T {
D2S (acur)

}
(anext − acur) . (23)

This is done on the condition that we are near the minimum where the third
derivatives are usually very small and we assume here that they are 0 (a bit
fudging here). Differentiating this (taking the gradient), yields us

DS (anext) = DS (acur) +D2S (acur) (anext − acur) . (24)

In case of an extremum (the minimum), this must be 0. Hence, we get a “single-
step” equation to the minimum as

anext = acur −
{
D2S (acur)

}−1
DS (acur) . (25)

We can rewrite this as

anext = acur + H−1 (−∇S (acur)) , (26)

where H = D2S (acur) is the Hessian matrix and ∇S = DS is the gradient of
S. Designating

δa ≡ anext − acur (27)

as the increment towards the next step, we get two equations to use for finding
the minimum:

δa = −constant · ∇S (acur) , (28)
−∇S (acur) = H δa. (29)
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The idea (in primitive form) is to pick one of them, solve for δa, and update
anext = acur + δa. Repeat this until either improvement in the value of S gets
really small or we run out of patience (in such a case new ideas are needed).

6 Calculating the gradient and the Hessian
We designate

βk ≡ −
1

2

∂S

∂ak
, αkl ≡

1

2

∂2S

∂αk∂αl
. (30)

Then we can rewrite (28) and (29) using matrix elements as
m∑
l=1

αklδal = βk, (31)

δal = constant · βl. (32)

Let us now calculate the partial derivatives of S, using equation (11):

∂S

∂ak
= −

n∑
i,j=1

wij

[
∂Y (xi|a)
∂ak

(yj − Y (xj |a)) +
∂Y (xj |a)
∂ak

(yi − Y (xi|a))
]
.

(33)
The second partial derivatives are

∂2S

∂ak∂al
= −

n∑
i,j=1

wij

[
∂2Y (xi|a)
∂ak∂al

(yj − Y (xj |a))−
∂Y (xi|a)
∂ak

∂Y (xj |a)
∂al

+
∂2Y (xj |a)
∂ak∂al

(yi − Y (xi|a))−
∂Y (xj |a)
∂ak

∂Y (xi|a)
∂al

]
. (34)

We are going to fudge again here by claiming that near the minimum the el-
ements containing second derivatives of Y are very small and their statistical
mean is 0 (they cancel out). Hence we simplify the second partial derivative of
S to

∂2S

∂ak∂al
=

n∑
i,j=1

wij

[
∂Y (xi|a)
∂ak

∂Y (xj |a)
∂al

+
∂Y (xj |a)
∂ak

∂Y (xi|a)
∂al

]
. (35)

But don’t worry too much. This fiddling will only affect the path we take to the
minimum (maybe making it slightly longer), but will not affect the end result.

7 Levenberg–Marquardt algorithm
Using the equations given for the derivatives of S, one can now apply the
Levenberg-Marquardt algorithm, as described in “Numerical Recipes: The Art
of Scientific Computing”. I’ve been using the third edition. Wonderful book.

The outline is following: We define a matrix α′ = (α′kl) by transforming
αkl −→ α′kl, so that

α′jj ≡ αjj (1 + λ) , (36)
α′jk ≡ αjk, (j 6= k), (37)
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where λ is the “weight parameter”, and start solving the system of m equations

m∑
l=1

α′klδal = βk, (k = 1 . . .m) . (38)

The algorithm is as following:

• Make a guess of initial parameters and place them into a;

• Compute S (a);

• Pick a modest value for λ, such as λ = 0.001;

• (*) Solve the system of linear equations (38) for δa and evaluate S (a + δa);

• If S (a + δa) ≥ S (a), increase λ by a factor of 10, and go back to (*);

• If S (a + δa) < S (a), decrease λ by a factor of 10, update a← a+ δa and
go back to (*).

Somewhere along the way you have to stop of course, say when the change in S
has been marginal for several consequent iterations.

8 Uncertainty of the parameters
While we have found the minimum of S, that is the best parameters, and say
they have passed the chi-square test, there is still something unclear. How
accurate are the parameters we have found? Quantitatively, what are their
uncertainties?

It can be shown (with some fudging for the non-linear models I think), that
the parameter covariance matrix C can be found from

C = α−1,

where α = (αkl) is the matrix formed from elements described in (30). Param-
eter standard deviation is then given by

σak =
√
ckk.

All of this is of course on the condition of multivariate normal distribution for
the measurements vector y.
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